Answer:
Option D
Explanation:
Key idea . The centroid of a triangle formed with vertices P(x1,y1,z1), Q( x2,y2,z2) and R( x3,y3,z3) are
$\left(\frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3},\frac{z_{1}+z_{2}+z_{3}}{3}\right)$
Here, $\left(\frac{7+p+q+1}{3},\frac{-8+q+5p}{3},\frac{1+5+0}{3}\right)= (3,-5,r)$
$\Rightarrow$ $\left(\frac{8+p+q}{3},\frac{-8+q+5p}{3},2\right)= (3,-5,r)$
$\Rightarrow$ $\frac{8+p+q}{3}=3,\frac{-8+q+5p}{3}=-5,2= r$
$\Rightarrow$ 8-p+q=9, -8+5p+q=-15; r=2
$\Rightarrow$ p+q=1, 5p+q=-7, r=2
$\Rightarrow$ p=-2, q=3, r=2